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K6pka and Chovanec have defined the concept of a D-poset, a partially ordered 
set with a partial operation O with properties analogous to subtraction on the 
real line. In this paper we study similar structures, but we do not assume a partial 
order relation or the existence of distinguished elements 0, 1. We call each such 
structure a D-set and show that if a certain condition is satisfied, a D-set becomes 
the union of Abelian groups. 

I N T R O D U C T I O N  

Definit ion 1.1. Let  L be nonempty  set and G be a part ia l  binary operat ion 
on L. Then the set L will  be cal led a dif ference set  (DS) if  the fo l lowing  
condi t ions  are fulf i l led:  

(d l)  For  a n y a  E L, a O a  ~ L a n d w e w i l l d e n o t e a O a  = 0a. 
(d2) I f a ,  b, a Q b  ~ L, t h e n a O  ( a O b )  ~ L a n d m o r e o v e r a G  

(a G b) = b. 
(d3) I f  a, b, c , a  O b, b G c  ~ L, then a G c E L and moreove r  

( a O c )  O ( a G b )  = b Q c .  

In the fo l lowing  l e m m a  we deduce the bas ic  proper t ies  of  a DS. S imi la r  
propert ies  were  p roved  for difference posets  in K 6 p k a  and Chovanec  (1994). 

Lemma 1.1. Let  L be a DS; then: 

(1) For  a n y a  e L, a G 0 a  e L a n d a O 0 a  = a .  
(2) I f  c Q a e L, then 0~ = 0c = 0cea. 
(3) I f c O a  = d, t h e n c O d =  a. 
(4) I f  c O  b, ( c O  b) G a  ~ L, then c O a ,  ( c O  a) G b  e L a n d  

( c O b )  G a  = ( c G a )  O b .  

Katedra Matematiky a Deskriptivnej Geomerie, Stavebn~ Fakulta, Slovensk~i Technick~i Uni- 
verzita, 813 63 Bratislava, Slovakia. E-mail: nanasio@cvt.stuba.sk. 

1637 
0020-774gl95/0800-1637507.5010 �9 1995 Plenum Publishing Corporation 



1638 Nfinfisiovfi 

Proof (l) I fa  c L, t h e n a @ a  E L a n d a  = a @ ( a @ a )  = a O 0 ~ ,  
EL.  S o a O O a = a .  

(2) I f c O a  E L, then (c O a) @ (c @ a) ~ L a n d 0 c e a  = ( c O a ) @  
( c @ a )  = a O a  = 0u. On the other hand, c O a ,  c O c  ~ L. T h e n ( c @  
a ) @ 0 c =  ( c e a )  O ( c @ c )  = c O a a n d 0 c e a  = ( c O a )  O ( c @ a )  = 
(c@a) O[(cOa)@0A=0c. 

(3) I f c @ a  ~ L a n d c @ a = d ,  t hena  = c O ( c O a )  = c @ d .  So 
a = c O d .  

(4) If c O b, (c @ b) O a  E L, thenb  = c O ( c @ b )  a n d ( c O b ) @  
a , c @ ( c e b )  c L. S o w e h a v e c @ a  E L a n d ( c @ a ) @ b  = ( c @ a ) @  
[ c O ( c O b ) ]  = (cOb) O a .  �9 

Definition 1.2. Let L be a DS. The set L will be called a group difference 
set (GDS) if the following condition is satisfied: 

(d4) a @ b  ~ L i f f b @ a  ~ L .  

Lemma 1.2. Let L be a GDS; then: 

(1) F o r a n y a  ~ L, O~ O a e L .  
(2) Fora ,  b ~ L, a O b  ~ L i f f 0 o  = 0b. 
(3) F o r a O b  E L, a O b  = 0 ~ O ( b O a ) .  

Proof (1) Let a E L. From the Lemma 1.1 we have a @ 0,, ~ L and 
from (d4) 0,, O a ~ L. 

(2) From Lemma 1.l we get a @ b E L implies 0~ = 0b = 0aeb. On 
the other hand let 0a = 0b. From (d4) 0o O a, 0b @ b ~ L. From axiom (d3) 
we g e t a @ b  ~ L. 

(3) L e t a Q b  ~ L. Then0,, = 0t, and0~ = a G a  = b @ b .  Now0a  
@ ( b O a ) = ( b @ b ) O ( b O a ) = a O b .  �9 

Definition 1.3. Let L be a DS. If 0h @ b e L, we define a @ b :=  a 
O ( 0 b O b )  i f f a @ b  ~ L. 

Proposition 1.3. Let L be a GDS. Then the following statements are true: 

(1) The set G(a) = {b ~ L: 0a = 0b} is an Abelian group, with the 
given operation. 

(2) If  for any a, b E L, 0a = 0b, then L is an Abelian group with the 
given operation. 

Proof (1) From Lemma 1.2 we know that 0, = 0b i f fa  @ b, b @ a ~ L. 
I f a  E L, t h e n a G 0 a  = a O ( 0 ~ O 0 a )  = a. 
Now we show the commutative law. Let b @ a E L. Then 0a = 0h and 

we can calculate b @ a = b O (0a @ a)  = (0~ O (0a @ b)) O (0a O a) = 
a @ ( 0 ~ Q b )  = a O b .  
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The associative law: Let (a �9 b) O c ~ L; then a, b, c E G(a). This 
implies (a O b) O c  = ( a O b )  O ( 0 n G C )  = [ a @ ( 0 n ~ b ) ] O ( 0 n O c )  
= [a @ (0a C) C)] @ (0~ @ b) = (a @ c) G b. Moreover,  (a @ b) ~ c) = 
( a G c ) @ b  = ( c G a ) @ b  = ( c @ b ) @ a  = a @ ( c G b ) .  

Let b, d ~ G(a) and let there be two elements x~, x2 ~ G(a) such that 
d @ x ~  = d @ x 2  = b. I f b  = d ~ x l ,  t h e n b  = d @ ( 0 ~ G x 0 .  F r o m t h i s  
we get 0a ~ xt = d @ b and moreover  Xl = b @ d. On the other hand, x2 
= b O d. This implies x~ = x2. Thus G(a) is Abelian group. 

(2) Suppose that for all a, b ~ L, 0~ = 0~. Then from Lemma 1.2 we 
h a v e a O b ,  b ~ a  ~ L a n d f o r e v e r y a ,  b ~ L, G(a) = G(b) = L. [] 

Proposition 1.4. L is a GDS if it can be written as disjoint union of  
Abelian groups. Conversely, every such disjoint union is a GDS. 

Proof  Let L be a GDS. If  G(a) = {b ~ L: 0n = 0b}, then G(a) is an 
Abelian group and it is clear that 0a = 0b iff G(a) = G(b) and 0n :P 0b iff 
G(a) N G(b) = Q~. For any c ~ L, c ~ G(c) and then 

L G U G(c) 
c ~ L  

On the other hand, for any a ~ L, G(a) C_ L. From this it follows that 

L = U G(a) 
a ~ L  

Conversely, let {T~}~r  be a family of  disjoint Abelian groups. Let ~ 
= U ~ r  T~. We can define a partial binary operation �9 as follows: a �9 b 

~- iff there exists e~ ~ F deal with a, b ~ T~ and moreover  a �9 b --- a 
G~ b, where D~ is the group operation on T~. In the fol lowing we will denote 
by the symbol a -  such an element f rom ~- that if a E T,~, then a -  ~ T~ deal 
with a �9 a -  = 0~. Let a partial binary operation G on ~- be defined as 
follows: a @ b ~ ~- iff there exist o~ ~ F with a, b ~ T~ and a O b --- a 
�9 b- .  In the fol lowing we show that ~- is a GDS. 

I f  a E ~-, then there is e~ ~ F such that a E T~ and 0,~ = a �9 a -  = 
a O a = O n  E ~-. 

If  a, b ~ ~- and a @ b E ~ ,  then there is ~ ~ F such that a, b ~ T~. 
Now a O b ~ ~ and a Q b = a O,~ b - .  But T~ is an Abelian group. Then 
a -  E T ~ a n d b O ~ a -  ~ T~. A n d b  O a -  = b o a  E ~ - a n d  0a = 0b = 0,~. 

If  a O b ~ ~-, then a �9 b -  ~ T. This means that there are ~, [3 E F 
with a ~ T,~, b ~ T~, and T,~ n T~ = Q.  From this it follows that b O a 
~ .  We conclude that a G b ~ ~- iff a G a e ~-. 
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Let a O b �9 ~-. Then there exists e~ �9 F with a O b = a O~ b-  �9 
T~. Hence T~ is an Abelian group; then a O~, (a O~ b )-  �9 To,. Thus 

(a 0~ b-)  O~ (a-  0~ b) 

= ((aO,~b-)O,~a-)Oo, b 

= ((a O~ s-) 0~ b-) O~ b 

= ( 0  a 0~  b-) �9 ab 

= b - O , ~ b  

= 0 a 

and 

(a O 

Thus ~- is a GDS. �9 

(a @,~ b-)  O~ (a O~ b - ) -  = 0a 

From the fact that T~ is an Abelian group we get 

(aO~b- ) -  = a - O , ~ b  

This implies 

a O ( a O b )  = a O , ~ ( a O , ~ b - ) -  = aO,~(a -O,~b)  = ( a O ~ a - ) O , ~ b  : b 

which implies 

a O (a O b) = b 

Let a O b, b O c �9 ~-. Then there exist cx, [3 �9 F such that a O b �9 
T~ and b O c �9 T~. From the definition of the partial binary operation O 
we get a, b �9 T~, b, c �9 T~, and then T~ n T~ 4: Q. This implies that T~ 
= T~, and k O,~ r = k O~ r for every k, r e T,~. From this it follows that a 
O c = a O~ c-  �9 T,~, (a O c) O (a O b) e T~, and moreover 

c) O (a O b) 

(a 0~  c-)  0 .  (a O .  b - ) -  

(a 0,~ c- )  0,~ (a-  0~, b) 

(a 0,~ (a-  0~  b)) 0~  c-  

((a O~ a - )  O~ c-  

bOo, c- 

b @ c  
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Corollary 1.4.1. Let L be a GDS. The set L is an Abelian group iff for 
every a, b E L, 0a = 0/,. 

Proof For every a, b E L, 0a = 0b = 0, implies L = G(a) = G(b). 
Hence G(a) is an Abelian group. 

If  L is an Abelian group, then for every a, b ~ L, a Q b = a �9 b-  
L. This implies that 0~ = 0b = 0. I 

Definition 1.4. Let L be a nonempty set with a partial binary operation 
O. We call a subset Eo of  L an ordering set if the fol lowing conditions 
are fulfilled: 

( t )  I f a ,  0 ~ O a  E L a n d 0 ~ O a  4 : a ,  t h e n a  ~ E o i f f 0 ~ a  ~ E o. 
(2) I f a O b ,  b E Eo, t h e n a  E Eo. 

Lemma 1.5. Let L be a GDS with the partial ordering set Eo. Let H = 
{a G b: a G b = b O a}. Then Eo N H = 0 .  

Proof Let there be element a ~ L such that a v ~ 0a and a ~ Eo N H. 
If  a ~ H, then a = 0~ O a. But if a ~ Eo, f rom condition (1), a ~ Eo iff 
0a G a ~ E 0. So 0~ Q a ~ Eo. This contradicts a = 0~ O a. Hence E0 N 
H = Q .  I 

Proposition 1.6. Let L be a GDS. If  there exist a partial ordering set Eo 
and we w r i t e a - < b i f f ( 1 )  a < b i f f b O a  E E o o r ( 2 )  a - -  b i f f a O b  = 
b G a, then ~ is a partial ordering on L. 

Proof Let H be as L e m m a  1.5. Then we know that H N Eo = Q.  Hence 
a G b  ~ L i f f { a G b ,  b G a }  n Eo 4: Q o r a G b  ~ H. It is clear that 0a 

H and hence a - a. 
L e t a < b a n d b  < a .  I f a G b  ~ H, t h e n b O a  E H, s o t h a t a - b .  
Let a < b, b < c. We want to show that a < c. From the definition for 

the relation < there exist the following possibilities: 

(1) a < b a n d b < c .  
(2) a - b a n d b - c .  
(3) a - b a n d b < c .  
(4) a < : c a n d c - -  b. 

Because 0a = 0b, 0r, = 0c, then 0~ =- 0c and c G a, a G c ~ L. 
(1) I f a  < b and b < c, then b Q a, c ~ b ~ Eo. Hence L is a GDS; then 

( c G a )  G ( c O b ) = b G a  

From the definition of  the set Eo it follows that c G a ~ Eo, which implies 
that a < c. 
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(2) I f a - b a n d b - c ,  t h e n a O b = b O a a n d c O b = b G c .  Hence 

(c O b) @ (c O a) = a O b  

and from this f o l l o w s c O a  = ( c O b )  O ( a O c )  = ( b O c )  O ( b O a )  = 
a O c. This implies a O c ~ H. We conclude that a -- c. 

(3) I f a - - b a n d b < c ,  t h e n a O b  e H a n d c O b  ~ E o . L e t c - a .  
Because (c O a) O ( c O b )  = b O a ,  w e h a v e c O b  = ( c O a )  O ( b O a )  
= (a O c) O (a O b) = b O c. But this means that b G c E H. This 
contradicts the assumption and hence a O c 4: c O a. Let a O c E Eo. Then 
from the basic property we get 

( a O b )  O ( a O c )  = c o b  

From the definition of the set E0, c G b, a (~ c E E0 implies a O b e E0. 
This contradicts the assumption. Hence c O a E Eo and consequently a < c. 

(4) L e t a < b a n d b - - c ; t h e n a O b  = b O a .  It is clear that (c O a) 
O ( c O b ) = b O a .  I f c O a  E H ,  t h e n c O a = a O c a n d w e c a n c a l c u l a t e  
b o a  = ( c O a )  O ( c O b )  = ( a O c )  G ( b O c )  = ( 0 a Q ( c O a ) ) Q ( 0 a  
O ( c G b ) )  = ( c O b )  O ( c O a )  = a O b .  T h i s i m p l i e s t h a t b G a  E H 
f 3 E 0 = ~ . H e n c e c G a  4 : a O c .  L e t a O c  e Eo;then 

( b e c )  O ( b O a )  = a O c  

From the definition of the set Eo we get b O c ~ Eo. This contradicts the 
assumption. Hence c O a E E0. This implies a < c. �9 

Now it is clear that if L is a GDS such that 0~ = 0b for all a, b E L, 
then L is an Abelian group. From this it follows that if we have L as a D- 
poset (D set with the partial ordering) and we assume that for any a O b 
L, b G a E L, we get the ordering group. If  L is a GDS and if there is an 
element a ~ L such that G(a) f3 Eo 4: 0 ,  then we can define partial ordering 
on the difference set L. 
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